Self-Avoiding Walks and Amenability

نویسندگان

  • Geoffrey R. Grimmett
  • Zhongyang Li
چکیده

The connective constant μ(G) of an infinite transitive graph G is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called ‘unimodular graph height functions’, namely: (i) whether μ(G) is a local function on certain graphs derived from G, (ii) the equality of μ(G) and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating μ(G) to a given degree of accuracy. In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable (and, more generally, virtually indicable) groups support unimodular graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function. In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of Benjamini, Nachmias, and Peres, it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group. The emphasis of the work is upon the structure of Cayley graphs, rather than upon the algebraic properties of the underlying groups. New methods are needed since a Cayley graph generally possesses automorphisms beyond those arising through the action of the group.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-similarity and Random Walks

This is an introductory level survey of some topics from a new branch of fractal analysis — the theory of self-similar groups. We discuss recent works on random walks on self-similar groups and their applications to the problem of amenability for these groups.

متن کامل

Self-avoiding walks, neighbour-avoiding walks and trails on semiregular lattices

We study self-avoiding and neighbour-avoiding walks and lattice trails on two semiregular lattices, the (3.122) lattice and the (4.82) lattice. For the (3.122) lattice we find the exact connective constant for both self-avoiding walks, neighbour-avoiding walks and trails. For the (4.82) lattice we generate long series which permit the accurate estimation of the connective constant for self-avoi...

متن کامل

Prudent Self-Avoiding Walks

We have produced extended series for prudent self-avoiding walks on the square lattice. These are subsets of self-avoiding walks. We conjecture the exact growth constant and critical exponent for the walks, and show that the (anisotropic) generating function is almost certainly not differentiably-finite.

متن کامل

Ballistic behavior for biased self-avoiding walks

For self-avoiding walks on the d-dimensional cubic lattice defined with a positive bias in one of the coordinate directions, it is proved that the drift in the favored direction is strictly positive. c © 2008 Elsevier B.V. All rights reserved. Keyword: Biased self-avoiding walks

متن کامل

Multicanonical simulation of the Domb-Joyce model and the Go model: new enumeration methods for self-avoiding walks

We develop statistical enumeration methods for self-avoiding walks using a powerful sampling technique called the multicanonical Monte Carlo method. Using these methods, we estimate the numbers of the two dimensional N-step self-avoiding walks up to N = 256 with statistical errors. The developed methods are based on statistical mechanical models of paths which include self-avoiding walks. The c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017